JAVA之JDK1.8中Stream流示例大全

欣喜 Java经验 发布时间:2024-01-30 17:00:32 阅读数:6612 1
下文笔者讲述JDK1.8中Stream的示例大全,如下所示
stream是一个元素的序列,它支持串行与并行的聚合操作;
stream本身不存储值,它通过管道(AbstractPipeline)的方式获取值;
stream本质是函数式的,对流的操作会生成一个结果,
         不过并不会修改底层的数据源,集合可以作为流的底层数据源;
stream可以设置延迟查找特性,
        很多流操作(过滤、映射、排序等)都可以延迟实现;
stream 由 数据源、零个或多个中间操作、终止操作 构成
stream 的链式操作特性:若最后没有添加终止操作,
         中间所定义的操作都不会执行;
        当调用终止操作时,流即会输出结果

=================================
stream 的特性
     流每进行一次中间操作,都会生成一个全新的流;
     不能对同一个流进行多次操作,否则会抛出异常;
     流的所有中间操作在遇到终止操作时,
        即会对集合进行遍历,同时将中间操作的内容作用于遍历过程,
       因此流的操作最终只进行了一次遍历操作


stream 的常用方法
      map(Function<? super T, ? extends R> mapper):中间操作,
         对steam 中的可用元素进行指定的操作
     mapToInt(ToIntFunction<? super T> mapper):
        map 方法的原生特化版本,其他还有 mapToDouble 和 mapToLong
     flatMap(Function<? super T, ? extends Stream<? extends R>> mapper):
      中间操作,
        将遍历的集合中的元素转化为 stream,
        然后将这些 stream 进行汇聚合并
     filter(Predicate<? super T> predicate):
      中间操作,用于判断过滤指定元素
     limit(long maxSize):
       短路中间操作,
       用于限定流中元素的个数
     skip(long n):
       短路中间操作,
       用于跳过流中指定个数的元素
    findFirst():
     短路终止操作
        获取 stream 中第一个参数,
       返回一个 Optional(由于数据源中元素个数未知)
    sum():
       IntStream 中的方法,求和,元素个数为0则返回0
    min() / max() / ...:
       IntStream 中的方法
       求最大最小值...,返回 OptionalInt
Stream示例

转换大写

 list<String> list3 = Arrays.asList("zhangSan", "liSi", "wangWu");
 System.out.println("转换之前的数据:" + list3);
 List<String> list4 = list3.stream().map(String::toUpperCase).collect(Collectors.toList());
 System.out.println("转换之后的数据:" + list4); 
 // 转换之后的数据:[ZHANGSAN, LISI,WANGWU]
 

转换数据类型

List<String> list31 = Arrays.asList("1", "2", "3");
 System.out.println("转换之前的数据:" + list31);
 List<Integer> list41 = list31.stream().map(Integer::valueOf).collect(Collectors.toList());
 System.out.println("转换之后的数据:" + list41); 
 // [1, 2, 3]

获取平方

List<Integer> list5 = Arrays.asList(new Integer[] { 1, 2, 3, 4, 5 });
 List<Integer> list6 = list5.stream().map(n -> n * n).collect(Collectors.toList());
 System.out.println("平方的数据:" + list6);
 // [1, 4, 9, 16, 25]
 

Stream流的filter使用
用于通过设置的条件过滤出元素

通过与 findAny 得到 if/else 的值
 
List<String> list = Arrays.asList("张三", "李四", "王五", "xuwujing");
String result3 = list.stream().filter(str -> "李四".equals(str)).findAny().orElse("找不到!");
String result4 = list.stream().filter(str -> "李二".equals(str)).findAny().orElse("找不到!");

System.out.println("stream 过滤之后 2:" + result3);
System.out.println("stream 过滤之后 3:" + result4);
//stream 过滤之后 2:李四
//stream 过滤之后 3:找不到!

通过与mapToInt 计算和

 List<User> lists = new ArrayList<User>();
 lists.add(new User(6, "张三"));
 lists.add(new User(2, "李四"));
 lists.add(new User(3, "王五"));
 lists.add(new User(1, "张三"));
 // 计算这个list中出现 "张三" id的值
 int sum = lists.stream().filter(u -> "张三".equals(u.getName())).
   mapToInt(u -> u.getId()).sum();

 System.out.println("计算结果:" + sum); 
 // 7 

从句子中得到单词,Stream一产生多

 String worlds = "Java265.com is very good";
 List<String> list7 = new ArrayList<>();
 list7.add(worlds);
 List<String> list8 = list7.stream().flatMap(str -> Stream.of(str.split(" ")))
   .filter(world -> world.length() > 0).collect(Collectors.toList());
 System.out.println("单词:");
 list8.forEach(System.out::println);
 // 单词:
 // Java265.com 
 // is 
 // very 
 // good 

Stream流的limit使用
用于获取指定数量的流

 Random rd = new Random();
 System.out.println("取到的前三条数据:");
 rd.ints().limit(3).forEach(System.out::println);
 // 取到的前三条数据:
 

扔掉前三个元素

skip表示的是扔掉前n个元素

List<User> list9 = new ArrayList<User>();
 for (int i = 1; i < 4; i++) {
  User user = new User(i, "pancm" + i);
  list9.add(user);
 }
 System.out.println("截取之前的数据:");

 // 取前3条数据,但是扔掉了前面的2条,可以理解为拿到的数据为 2<=i<3 (i 是数值下标)
 List<String> list10 = list9.stream().map(User::getName).limit(3).skip(2).collect(Collectors.toList());
 System.out.println("截取之后的数据:" + list10);
 //  截取之前的数据:
 //  姓名:pancm1
 //  姓名:pancm2
 //  姓名:pancm3
 //  截取之后的数据:[pancm3]
 

Stream流的sort使用

Random rd2 = new Random();
 System.out.println("取到的前三条数据然后进行排序:");
 rd2.ints().limit(3).sorted().forEach(System.out::println);
 // 取到的前三条数据然后进行排序:

优化排序

//普通的排序取值
 List<User> list11 = list9.stream().sorted((u1, u2) -> u1.getName().compareTo(u2.getName())).limit(3)
   .collect(Collectors.toList());
 System.out.println("排序之后的数据:" + list11);
 //优化排序取值
 List<User> list12 = list9.stream().limit(3).sorted((u1, u2) -> u1.getName().compareTo(u2.getName()))
   .collect(Collectors.toList());
 System.out.println("优化排序之后的数据:" + list12);
 //排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]
 //优化排序之后的数据:[{"id":1,"name":"pancm1"}, {"id":2,"name":"pancm2"}, {"id":3,"name":"pancm3"}]
 

Stream流的max/min/distinct使用

得到最大最小值

List<String> list13 = Arrays.asList("zhangsan","lisi","wangwu","xuwujing");
 int maxLines = list13.stream().mapToInt(String::length).max().getAsInt();
 int minLines = list13.stream().mapToInt(String::length).min().getAsInt();
 System.out.println("最长字符的长度:" + maxLines+",最短字符的长度:"+minLines);
 //最长字符的长度:8,最短字符的长度:4
 

得到去重之后的数据
 String lines = "good good study day day up";
 List<String> list14 = new ArrayList<String>();
 list14.add(lines);
 List<String> words = list14.stream().flatMap(line -> Stream.of(line.split(" "))).filter(word -> word.length() > 0)
   .map(String::toLowerCase).distinct().sorted().collect(Collectors.toList());
 System.out.println("去重复之后:" + words);
 //去重复之后:[day, good, study, up]
 

Stream流的Match使用

allMatch:Stream 中全部元素符合则返回 true ;
anyMatch:Stream 中只要有一个元素符合则返回 true;
noneMatch:Stream 中没有一个元素符合则返回 true。

数据是否符合

 boolean all = lists.stream().allMatch(u -> u.getId() > 3);
 System.out.println("是否都大于3:" + all);
 boolean any = lists.stream().anyMatch(u -> u.getId() > 3);
 System.out.println("是否有一个大于3:" + any);
 boolean none = lists.stream().noneMatch(u -> u.getId() > 3);
 System.out.println("是否没有一个大于3的:" + none);  
 // 是否都大于3:false
 // 是否有一个大于3:true
 // 是否没有一个大于3的:false
 

Stream流的reduce使用:
将Stream 元素组合起来进行操作

字符串连接

String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
System.out.println("字符串拼接:" + concat);
 

得到最小值

 double minValue = Stream.of(-4.0, 1.0, 3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
 System.out.println("最小值:" + minValue);
 //最小值:-4.0
 

求和

// 求和, 无起始值
 int sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
 System.out.println("有无起始值求和:" + sumValue);
 // 求和, 有起始值
  sumValue = Stream.of(1, 2, 3, 4).reduce(1, Integer::sum);
  System.out.println("有起始值求和:" + sumValue);
 // 有无起始值求和:10
 // 有起始值求和:11
 

过滤拼接

concat = Stream.of("a", "B", "c", "D", "e", "F").filter(x -> x.compareTo("Z") > 0).reduce("", String::concat);
System.out.println("过滤和字符串连接:" + concat);
 //过滤和字符串连接:ace
 

Stream流的groupingBy/partitioningBy使用

groupingBy:分组排序;
partitioningBy:分区排序。
 

分组排序
 
System.out.println("通过id进行分组排序:");
 Map<Integer, List<User>> personGroups = Stream.generate(new UserSupplier2()).limit(5)
   .collect(Collectors.groupingBy(User::getId));
 Iterator it = personGroups.entrySet().iterator();
 while (it.hasNext()) {
  Map.Entry<Integer, List<User>> persons = (Map.Entry) it.next();
  System.out.println("id " + persons.getKey() + " = " + persons.getValue());
 }
 
 // 通过id进行分组排序:
 // id 10 = [{"id":10,"name":"pancm1"}] 
 // id 11 = [{"id":11,"name":"pancm3"}, {"id":11,"name":"pancm6"}, {"id":11,"name":"pancm4"}, {"id":11,"name":"pancm7"}]



 class UserSupplier2 implements Supplier<User> {
  private int index = 10;
  private Random random = new Random();
 
  @Override
  public User get() {
   return new User(index % 2 == 0 ? index++ : index, "pancm" + random.nextInt(10));
  }
 }
 

 

分区排序
 
 System.out.println("通过年龄进行分区排序:");
 Map<Boolean, List<User>> children = Stream.generate(new UserSupplier3()).limit(5)
   .collect(Collectors.partitioningBy(p -> p.getId() < 18));

 System.out.println("小孩: " + children.get(true));
 System.out.println("成年人: " + children.get(false));
 
 // 通过年龄进行分区排序:
 // 小孩: [{"id":16,"name":"pancm7"}, {"id":17,"name":"pancm2"}]
 // 成年人: [{"id":18,"name":"pancm4"}, {"id":19,"name":"pancm9"}, {"id":20,"name":"pancm6"}]

  class UserSupplier3 implements Supplier<User> {
  private int index = 16;
  private Random random = new Random();
 
  @Override
  public User get() {
   return new User(index++, "pancm" + random.nextInt(10));
  }
 }
 

得到最大、最小、之和以及平均数

 List<Integer> numbers = Arrays.asList(1, 5, 7, 3, 9);
 IntSummaryStatistics stats = numbers.stream().mapToInt((x) -> x).summaryStatistics();
  
 System.out.println("列表中最大的数 : " + stats.getMax());
 System.out.println("列表中最小的数 : " + stats.getMin());
 System.out.println("所有数之和 : " + stats.getSum());
 System.out.println("平均数 : " + stats.getAverage());
 
 // 列表中最大的数 : 9
 // 列表中最小的数 : 1
 // 所有数之和 : 25
 // 平均数 : 5.0
版权声明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接: https://www.Java265.com/JavaJingYan/202401/17066052737861.html

最近发表

热门文章

好文推荐

Java265.com

https://www.java265.com

站长统计|粤ICP备14097017号-3

Powered By Java265.com信息维护小组

使用手机扫描二维码

关注我们看更多资讯

java爱好者